Functional BES equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional BES equation

We give a realization of the Beisert, Eden and Staudacher equation for the planar N = 4 supersymetric gauge theory which seems to be particularly useful to study the strong coupling limit. We are using a linearized version of the BES equation as two coupled equations involving an auxiliary density function. We write these equations in terms of the resolvents and we transform them into to a syst...

متن کامل

(BES Collaboration) †

BES data on J/ψ → γ(KK Sπ) are presented. There is a strong peak due to η(1440)/ι, which is fitted with a Breit-Wigner amplitude with s-dependent widths for decays to KK, κK, ηππ and ρρ; κ refers to the Kπ S-wave. At a KK̄π mass of ∼ 2040 MeV, there is a second peak with width ∼ 400 MeV; J = 0 is preferred over 1 and 2 respectively by 5.2 and 6.8 standard deviations. It is a possible candidate f...

متن کامل

On Hilbert Golab-Schinzel type functional equation

Let $X$ be a vector space over a field $K$ of real or complex numbers. We will prove the superstability of the following Go{l}c{a}b-Schinzel type equation$$f(x+g(x)y)=f(x)f(y), x,yin X,$$where $f,g:Xrightarrow K$ are unknown functions (satisfying some assumptions). Then we generalize the superstability result for this equation with values in the field of complex numbers to the case of an arbitr...

متن کامل

stability of the quadratic functional equation

In the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{E}$$ isgiven where $sigma$ is an involution of the normed space $E$ and$k$ is a fixed positive integer. Furthermore we investigate theHyers-Ulam-Rassias stability of the functional equation. TheHyers-Ulam stability on unbounded domains is also studied.Applic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2008

ISSN: 1029-8479

DOI: 10.1088/1126-6708/2008/08/101